Name of the Bundle	Advanced Bundle V2	Subject	Competitive Exams Training (Science & Geography)
Topic	Magnetism	Last updated on	14 February 2025

Multiple choice questions (MCQ) on Magnetism:

- 1. The magnitude of the magnetic field around a current-carrying conductor is:
- a. Directly proportional to the distance from the conductor and inversely proportional to the current
- b. Directly proportional to both the current and the distance from the conductor
- c. Directly proportional to the current and inversely proportional to the distance from the conductor
- d. Inversely proportional to both the current and the distance from the conductor

Ans c. Directly proportional to the current and inversely proportional to the distance from the conductor

- 2. Which of the following minerals contains iron?
- a. Pyrrhotite (Iron Sulphide)
- b. Ferrite
- c. Columbite
- d. All of the above

Ans d. All of the above

- 3. Which of the following iron ores has the highest iron content?
- a. Hematite
- b. Magnetite
- c. Siderite
- d. All have the same iron content

Ans b. Magnetite (72.4% of iron)

Name of the Bundle	Advanced Bundle V2	Subject	Competitive Exams Training (Science & Geography)
Topic	Magnetism	Last updated on	14 February 2025

- 4. Which of the following types of magnets produces a magnetic field?
- a. Bar magnets
- b. Horseshoe magnets
- c. Electromagnets
- d. All of the above

Ans d. All of the above

- 5. Which of the following metals or alloys are commonly used to make permanent magnets?
- a. Iron, Nickel, Cobalt, Steel
- b. Alloy of Neodymium and Samarium
- c. Both A and B
- d. None of the above

Ans c. Both A and B

- 6. What is the primary cause of Earth's magnetism?
- a. The presence of magnetic rocks in the crust
- b. The rotation of the Earth
- c. The Dynamo effect in the Earth's core
- d. The gravitational pull of the Moon

Ans c. The Dynamo effect in the Earth's core

- 7. What determines the pattern of the magnetic field generated by a current-carrying conductor?
- a. The material of the conductor
- b. The shape of the conductor
- c. The color of the conductor
- d. The temperature of the conductor

Ans b. The shape of the conductor

Name of the Bundle	Advanced Bundle V2	Subject	Competitive Exams Training (Science & Geography)
Topic	Magnetism	Last updated on	14 February 2025

- 8. What is the magnitude of the magnetic field at the center of a bar magnet?
- a. Maximum
- b. Zero
- c. Equal to the field at the poles
- d. Cannot be determined

Ans b. Zero

- 9. Where is the density of magnetic field lines the highest in a bar magnet?
- a. At the center
- b. At the poles
- c. Uniform throughout the magnet
- d. Outside the magnet only

Ans b. At the poles

- 10. How are materials classified based on their behavior in a magnetic field?
- a. Conductors, Insulators, and Semiconductors
- b. Diamagnetic, Paramagnetic, and Ferromagnetic materials
- c. Solids, Liquids, and Gases
- d. Magnetic, Non-magnetic, and Superconductors

Ans b. Diamagnetic, Paramagnetic, and Ferromagnetic materials

- 11. Which of the following statements is true about diamagnetic materials?
- a. They are magnetized in the same direction as the magnetic field.
- b. They are magnetized in a direction opposite to the magnetic field.
- c. They are strongly attracted to magnets.
- d. They lose their magnetic properties at high temperatures.

Ans b. They are magnetized in a direction opposite to the magnetic field.

Name of the Bundle	Advanced Bundle V2	Subject	Competitive Exams Training (Science & Geography)
Topic	Magnetism	Last updated on	14 February 2025

12. Which of the following are examples of diamagnetic materials?

- a. Iron, cobalt, nickel
- b. Copper, mercury, gold
- c. Aluminum, platinum, manganese
- d. Steel, iron, cobalt

Ans b. Copper, mercury, gold

13. Which of the following statements is true about paramagnetic materials?

- a. They are magnetized opposite to the magnetic field.
- b. They are magnetized in the direction of the magnetic field.
- c. They are strongly repelled by a magnetic field.
- d. They lose all magnetism when placed in a magnetic field.

Ans b. They are magnetized in the direction of the magnetic field.

- 14. Which of the following are examples of paramagnetic materials?
- a. Iron, cobalt, nickel
- b. Aluminium, platinum, chromium
- c. Copper, mercury, gold
- d. Steel, lead, zinc

Ans b. Aluminium, platinum, chromium

15. Which of the following statements is true about ferromagnetic materials?

- a. They are magnetized opposite to the magnetic field.
- b. They are weakly magnetized in the direction of the magnetic field.
- c. They are strongly magnetized in the direction of the magnetic field.
- d. They are not affected by magnetic fields.

Ans c. They are strongly magnetized in the direction of the magnetic field.

Name of the Bundle	Advanced Bundle V2	Subject	Competitive Exams Training (Science & Geography)
Topic	Magnetism	Last updated on	14 February 2025

16. Which of the following are examples of ferromagnetic materials?

- a. Iron, cobalt, nickel, steel
- b. Aluminium, copper, gold
- c. Platinum, manganese, chromium
- d. Mercury, lead, zinc

Ans a. Iron, cobalt, nickel, steel

- 17. According to Faraday's law of electromagnetic induction, what happens when a conductor moves through a magnetic field?
- a. The conductor heats up.
- b. An electric current is induced in the conductor.
- c. The magnetic field disappears.
- d. The conductor produces sound waves.

Ans b. An electric current is induced in the conductor.

- 18. What is Fleming's right-hand rule used for?
- a. To determine the direction of the magnetic field
- b. To determine the direction of force on a current-carrying conductor
- c. To determine the direction of the induced current
- d. To determine the magnitude of the electric current

Ans c. To determine the direction of the induced current

- 19. What happens to the magnetic field lines around a current-carrying wire as you move away from it?
- a. They become stronger.
- b. They remain constant.
- c. They become weaker and diminish.
- d. They change direction randomly.

Ans c. They become weaker and diminish.

Name of the Bundle	Advanced Bundle V2	Subject	Competitive Exams Training (Science & Geography)
Topic	Magnetism	Last updated on	14 February 2025

20. What does Fleming's Right-Hand Rule help to determine?

- a. The direction of force on a current-carrying conductor
- b. The direction of the induced current in a conductor
- c. The direction of the magnetic field around a wire
- d. The magnitude of the electric current

Ans b. The direction of the induced current in a conductor

- 21. According to Fleming's Right-Hand Rule, which fingers represent the magnetic field, current, and motion?
- a. Thumb: Current, Index finger: Magnetic field, Middle finger: Motion
- b. Thumb: Motion, Index finger: Magnetic field, Middle finger: Current
- c. Thumb: Magnetic field, Index finger: Current, Middle finger: Motion
- d. Thumb: Motion, Index finger: Current, Middle finger: Magnetic field

Ans b. Thumb: Motion, Index finger: Magnetic field, Middle finger: Current

- 22. What is the force experienced by a moving charge in a magnetic field, called?
- a. Gravitational force
- b. Electrostatic force
- c. Magnetic Lorentz force
- d. Centripetal force

Ans c. Magnetic Lorentz force

- 23. When does a charged particle experience the maximum magnetic Lorentz force?
- a. When moving parallel to the magnetic field
- b. When moving perpendicular to the magnetic field
- c. When at rest in the magnetic field
- d. When moving opposite to the magnetic field

Ans b. When moving perpendicular to the magnetic field

Name of the Bundle	Advanced Bundle V2	Subject	Competitive Exams Training (Science & Geography)
Topic	Magnetism	Last updated on	14 February 2025

24. What is Fleming's Left-Hand Rule used for?

- a. To determine the direction of the induced current
- b. To determine the direction of force on a current-carrying conductor in a magnetic field
- c. To determine the direction of the magnetic field
- d. To measure the strength of the magnetic field

Ans b. To determine the direction of force on a current-carrying conductor in a magnetic field

- 25. According to Fleming's Left-Hand Rule, which fingers represent the magnetic field, current, and force?
- a. Thumb: Force, Index finger: Magnetic field, Middle finger: Current
- b. Thumb: Current, Index finger: Force, Middle finger: Magnetic field
- c. Thumb: Magnetic field, Index finger: Current, Middle finger: Force
- d. Thumb: Force, Index finger: Current, Middle finger: Magnetic field

Ans a. Thumb: Force, Index finger: Magnetic field, Middle finger: Current

- 26. What does Fleming's Left-Hand Rule help to determine?
- a. The direction of the induced current
- b. The direction of force on a current-carrying conductor in a magnetic field
- c. The direction of the magnetic field around a conductor
- d. The magnitude of the electric current

Ans b. The direction of force on a current-carrying conductor in a magnetic field

Name of the Bundle	Advanced Bundle V2	Subject	Competitive Exams Training (Science & Geography)
Topic	Magnetism	Last updated on	14 February 2025

27. According to Fleming's Left-Hand Rule, which fingers represent the magnetic field, current, and force?

a. Thumb: Current, Index finger: Force, Middle finger: Magnetic field

b. Thumb: Force, Index finger: Magnetic field, Middle finger: Current

c. Thumb: Magnetic field, Index finger: Current, Middle finger: Force

d. Thumb: Force, Index finger: Current, Middle finger: Magnetic field

Ans b. Thumb: Force, Index finger: Magnetic field, Middle finger: Current

28. What is the function of the commutator in an electric motor?

- a. To increase the current in the coil
- b. To reverse the direction of current in the coil
- c. To generate electricity from mechanical energy
- d. To reduce heat loss in the motor

Ans b. To reverse the direction of current in the coil

29. Why is it necessary for the commutator to reverse the current in the coil?

- a. To maintain continuous rotation of the coil
- b. To prevent the motor from overheating
- c. To increase the power output
- d. To reduce friction in the motor

Ans a. To maintain continuous rotation of the coil

30. What is electromagnetic induction?

- a. The process of generating heat using a magnetic field
- b. The process of generating an electric current by changing the magnetic field
- c. The conversion of electrical energy into mechanical energy
- d. The attraction of metals towards a magnet

Ans b. The process of generating an electric current by changing the magnetic field

Name of the Bundle	Advanced Bundle V2	Subject	Competitive Exams Training (Science & Geography)
Topic	Magnetism	Last updated on	14 February 2025

- 31. Which scientist discovered the phenomenon of electromagnetic induction?
- a. Nikola Tesla
- b. Michael Faraday
- c. Isaac Newton
- d. Albert Einstein

Ans b. Michael Faraday

- 32. Which of the following devices works on the principle of electromagnetic induction?
- a. Electric motor
- b. Electric generator
- c. Solar panel
- d. Light bulb

Ans b. Electric generator

- 33. Which phenomenon is the principle behind the operation of transformers, electric generators, and inductors?
- a. Photoelectric effect
- b. Electromagnetic induction
- c. Thermal conduction
- d. Nuclear fusion

Ans b. Electromagnetic induction

Name of the Bundle	Advanced Bundle V2	Subject	Competitive Exams Training (Science & Geography)
Topic	Magnetism	Last updated on	14 February 2025

34. What are electromagnets?

- a. Magnets that lose their magnetism over time
- b. Devices that produce a magnetic field when an electric current passes through them
- c. Permanent magnets made from iron
- d. Magnets that work only at very high temperatures

Ans b. Devices that produce a magnetic field when an electric current passes through them

- 35. Which of the following is a common use of electromagnets?
- a. In electric bells
- b. In refrigerators
- c. In solar panels
- d. In water heaters

Ans a. In electric bells

36. What does Faraday's law of electromagnetic induction state?

- a. The magnetic field is proportional to the current in a conductor.
- b. The induced electromotive force (EMF) is directly proportional to the rate of change of magnetic flux.
- c. The current through a conductor is inversely proportional to voltage.
- d. The force between two charges is proportional to their product.

Ans b. The induced electromotive force (EMF) is directly proportional to the rate of change of magnetic flux.

Name of the Bundle	Advanced Bundle V2	Subject	Competitive Exams Training (Science & Geography)
Topic	Magnetism	Last updated on	14 February 2025

37. Which of the following devices works based on Faraday's law of electromagnetic induction?

- a. Electric motor
- b. Transformer
- c. Solar panel
- d. Light bulb

Ans b. Transformer

- 38. Who discovered the law of electromagnetic induction?
- a. James Clerk Maxwell
- b. Michael Faraday
- c. Nikola Tesla
- d. Albert Einstein

Ans b. Michael Faraday

- 39. Which of the following are common uses of magnets?
- a. In electric motors and generators
- b. In refrigerators and microwave doors
- c. In compasses for navigation
- d. All of the above

Ans d. All of the above

- 40. Which magnet type is commonly used in MRI (Magnetic Resonance Imaging) machines?
- a. Permanent magnet
- b. Electromagnet
- c. Bar magnet
- d. Horseshoe magnet

Ans b. Electromagnet

Name of the Bundle	Advanced Bundle V2	Subject	Competitive Exams Training (Science & Geography)
Topic	Magnetism	Last updated on	14 February 2025

41. Why are magnets used in loudspeakers?

- a. To increase the volume
- b. To convert electrical signals into sound vibrations
- c. To cool the speaker
- d. To store electrical energy

Ans b. To convert electrical signals into sound vibrations

- 42. What is Magnetic Resonance Imaging (MRI) primarily used for?
- a. Measuring blood pressure
- b. Producing detailed images of internal body structures
- c. Checking heart rate
- d. Measuring body temperature

Ans b. Producing detailed images of internal body structures

- 43. Which type of magnet is used in MRI machines?
- a. Bar magnets
- b. Permanent magnets
- c. Electromagnets
- d. Horseshoe magnets

Ans c. Electromagnets

- 44. Which element in the body is primarily detected during MRI scans?
- a. Oxygen
- b. Carbon
- c. Hydrogen
- d. Calcium

Ans c. Hydrogen

Name of the Bundle	Advanced Bundle V2	Subject	Competitive Exams Training (Science & Geography)
Topic	Magnetism	Last updated on	14 February 2025

45. What technology is used to lift and propel magnetic levitation (Maglev) trains?

- a. Electromagnetic induction
- b. Magnetic repulsion and attraction
- c. Gravitational force
- d. Thermal expansion

Ans b. Magnetic repulsion and attraction

- 46. Which type of magnets are primarily used in Maglev trains?
- a. Bar magnets
- b. Electromagnets
- c. Permanent magnets
- d. Horseshoe magnets

Ans b. Electromagnets

- 47. What is the main advantage of Maglev trains over traditional trains?
- a. Lower electricity consumption
- b. Reduced friction, allowing for higher speeds
- c. Lower ticket prices
- d. Ability to carry more passengers

Ans b. Reduced friction, allowing for higher speeds

- 48. How can the direction of a magnetic field be determined?
- a. By using an ammeter
- b. By placing a small compass in the magnetic field
- c. By measuring the temperature
- d. By using a voltmeter

Ans b. By placing a small compass in the magnetic field